

Monday 27 June 2016 – Morning

A2 GCE MATHEMATICS (MEI)

4756/01 Further Methods for Advanced Mathematics (FP2)

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4756/01
- MEI Examination Formulae and Tables (MF2)

Duration: 1 hour 30 minutes

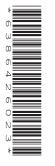
Other materials required:

• Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer **Book**. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.


INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Section A (54 marks)

- 1 (a) (i) Given that $f(x) = \arctan x$, write down an expression for f'(x). Assuming that x is small, use a binomial expansion to express f'(x) in ascending powers of x as far as the term in x^4 . [3]
 - (ii) Hence express $\arctan x$ in ascending powers of x as far as the term in x^5 . [3]
 - (b) Find, in exact form, the value of the following integral.

$$\int_{0}^{\frac{3}{4}} \frac{1}{\sqrt{3-4x^2}} dx$$
 [5]

- (c) A curve has polar equation $r = \frac{a}{\sqrt{\theta}}$ where a > 0.
 - (i) Sketch the curve for $\frac{\pi}{4} \le \theta \le 2\pi$. [2]
 - (ii) State what happens to r as θ tends to zero. [1]
 - (iii) Find the area of the region enclosed by the part of the curve sketched in part (i) and the lines $\theta = \frac{\pi}{4}$ and $\theta = 2\pi$. Give your answer in an exact simplified form. [4]
- 2 (a) (i) Express $2\sin\frac{1}{2}\theta\left(\sin\frac{1}{2}\theta j\cos\frac{1}{2}\theta\right)$ in terms of z where $z = \cos\theta + j\sin\theta$. [3]
 - (ii) The series C and S are defined as follows.

$$C = 1 - \binom{n}{1}\cos\theta + \binom{n}{2}\cos 2\theta - \dots + (-1)^n \binom{n}{n}\cos n\theta$$
$$S = -\binom{n}{1}\sin\theta + \binom{n}{2}\sin 2\theta - \dots + (-1)^n \binom{n}{n}\sin n\theta$$

Show that

 $C + \mathbf{j}S = \left\{-2\mathbf{j}\sin\frac{1}{2}\theta\left(\cos\frac{1}{2}\theta + \mathbf{j}\sin\frac{1}{2}\theta\right)\right\}^n.$

Hence show that, for even values of *n*,

$$\frac{C}{S} = \cot\left(\frac{1}{2}n\theta\right).$$
 [8]

(b) Write the complex number $z = \sqrt{6} + j\sqrt{2}$ in the form $re^{j\theta}$, expressing *r* and θ as simply as possible. Hence find the cube roots of *z* in the form $re^{j\theta}$.

Show the points representing *z* and its cube roots on an Argand diagram. [7]

3 (i) Find the eigenvalues and eigenvectors of the matrix M, where

$$\mathbf{M} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}.$$

Hence express **M** in the form \mathbf{PDP}^{-1} where **D** is a diagonal matrix.

(ii) Write down an equation for \mathbf{M}^n in terms of the matrices \mathbf{P} and \mathbf{D} .

Hence obtain expressions for the elements of \mathbf{M}^{n} .

Show that \mathbf{M}^n tends to a limit as *n* tends to infinity. Find that limit. [6]

(iii) Express \mathbf{M}^{-1} in terms of the matrices **P** and **D**. Hence determine whether or not $(\mathbf{M}^{-1})^n$ tends to a limit as *n* tends to infinity. [4]

Section B (18 marks)

4 (i) Given that $y = \cosh x$, use the definition of $\cosh x$ in terms of exponential functions to prove that

$$x = \pm \ln(y + \sqrt{y^2 - 1}).$$
[5]

(ii) Solve the equation

$$\cosh x + \cosh 2x = 5,$$

giving the roots in an exact logarithmic form.

(iii) Sketch the curve with equation $y = \cosh x + \cosh 2x$. Show on your sketch the line y = 5.

Find the area of the finite region bounded by the curve and the line y = 5. Give your answer in an exact form that does not involve hyperbolic functions. [8]

END OF QUESTION PAPER

[5]

[8]

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Monday 27 June 2016 – Morning

A2 GCE MATHEMATICS (MEI)

4756/01 Further Methods for Advanced Mathematics (FP2)

PRINTED ANSWER BOOK

Candidates answer on this Printed Answer Book.

OCR supplied materials:

Other materials required:

Question Paper 4756/01 (inserted)

Scientific or graphical calculator

MEI Examination Formulae and Tables (MF2)

Duration: 1 hour 30 minutes

Candidate	
forename	

Candidate surname

Centre number						Candidate number					
---------------	--	--	--	--	--	------------------	--	--	--	--	--

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

Section A (54 Marks)

1(u)(i)		
	1(a)(i)	
Image:		
Image:		
Image:		
I (a)(ii) I (a)(ii) I (a)(ii) I (a)(ii) I (a)(ii) I (a)(ii) I (a)(ii)		
Image:		
Image:		
Image:		
Image:		
Image:		
Image:		
Image:		
I (a) (ii) I (a) (iii)		
I (a) (ii) I (a) (iii)		
Image:		
Image:		
Image:		
I (a) (ii)		
I (a) (i) I (a) (i) II (a) (i)		
I(a)(ii) II(a)(ii) III(a)(ii) IIII(a)(ii) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
Image:		
I(a) (ii) II(a) (ii) III(a) (iii) IIII(a) (iii) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
I (a) (ii) II (a) (ii) II (a) (iii) <		
1(a) (ii)		
1(a) (ii)		
1 (a) (ii)		
	1(a)(ii)	
	- ((())(()	

1	
1 (b)	

1 (c) (i)	
1 (c) (ii)	
1 (-) (**)	
1 (c) (iii)	

2 (a) (i)	

2 (a) (ii)	

2 (b)	

3 (i)	
,	

2 (::)	
3 (ii)	
ľ	
,	

3 (iii)	

Section B (18 Marks)

4(i)	

4 (ii)	

4 (iii)	
- ()	
	(answer space continued on next page)

4(iii)	(continued)

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margins.

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

GCE

Mathematics (MEI)

Unit 4756: Further Methods for Advanced Mathematics

Advanced GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0 M1	Method mark awarded 0, 1
A0 A1	Accuracy mark awarded 0, 1
B0 B1	Independent mark awarded 0, 1
SC	Special case
	Omission sign
MB	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
00	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Mark Scheme

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

Mark Scheme

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Q	Question		Answer	Marks	Guidance		
1	<u>Questi</u> (a) (b)	(i) (ii)	$f'(x) = \frac{1}{1 + x^2}$ Binomial expansion gives $f'(x) = 1 - x^2 + x^4 (-\cdots)$ Integrate to obtain $f(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots (+c)$ Use $\arctan(0) = 0$ to find $c = 0$	Marks B1 M1 A1 [3] M1 A1 [3]	Guidant Three terms from $(1 + x^2)^{-1}$ Give full marks for correct series	Ignore higher powersMust use $f'(x)$ Just answer (without +c) is M0Can be earned after M1A0	
			$\frac{1}{2} \int_{0}^{3/4} \frac{1}{\sqrt{\frac{3}{4} - x^{2}}} dx$ $\frac{1}{2} \left[\arcsin \frac{2x}{\sqrt{3}} \right]_{0}^{3/4}$ $\frac{1}{2} \left(\arcsin \frac{\sqrt{3}}{2} - \arcsin 0 \right)$ $\frac{\pi}{6}$	M1 A1 A1 A1 [5]	For arcsin (or arccos) For $\arcsin \frac{2x}{\sqrt{3}}$ (o.e.) For $\frac{1}{2}$ For $\arcsin \frac{\sqrt{3}}{2} = \frac{\pi}{3}$ soi	or any sine (or cosine) substitution or $2x = \sqrt{3} \sin u$ or $\left[\frac{1}{2}u\right]$ e.g. new limit is $\frac{\pi}{3}$	

Q	Question		Answer	Marks	Guidance		
	(c)	(i)	98 135 188 8/368 225 278	G1 G1 [2]	Overall spiral shape (<i>lenient</i>) Correct limits for θ		
		(ii)	r tends to infinity as θ tends to zero	B1 [1]			
		(iii)	Area is $\frac{1}{2} \int_{\pi/4}^{2\pi} \frac{a^2}{\theta} d\theta$ $\frac{1}{2} [a^2 \ln\theta]_{\pi/4}^{2\pi}$	M1 A1	For integral of $\left(\frac{a}{\sqrt{\theta}}\right)^2$		
			$\frac{1}{2} [a^2 \ln \theta]_{\pi/4}^{2\pi}$ $\frac{1}{2} \left(a^2 \ln 2\pi - a^2 \ln \frac{\pi}{4} \right)$ Simplify to $\frac{3}{2} a^2 \ln 2$		For $\ln 2\pi - \ln \frac{\pi}{4}$ o.e. Or $\frac{1}{2}a^2 \ln 8$ or $a^2 \ln(\sqrt{8})$ etc		

	Questi	ion	Answer	Marks	Guidance	
2	(a)	(i)	$2\sin^2\left(\frac{1}{2}\theta\right) - j 2\sin\left(\frac{1}{2}\theta\right)\cos\left(\frac{1}{2}\theta\right)$	M1	Using half-angle formulae to express in terms of $\cos \theta$, $\sin \theta$	
			$=(1-\cos\theta)-\mathrm{j}\sin\theta$	A1		
			=1-z	A1		
				[3]		
		OR	$\left(\frac{z^{\frac{1}{2}} - z^{-\frac{1}{2}}}{j}\right) \left(\frac{z^{\frac{1}{2}} - z^{-\frac{1}{2}}}{2j} - j\frac{z^{\frac{1}{2}} + z^{-\frac{1}{2}}}{2}\right)$		M1	
			$= \left(z^{\frac{1}{2}} - z^{-\frac{1}{2}}\right) \left(-\frac{z^{\frac{1}{2}} - z^{-\frac{1}{2}}}{2} - \frac{z^{\frac{1}{2}} + z^{-\frac{1}{2}}}{2}\right)$		A1 Correct form without j	
			=1-z		A1	
		OR	$-2j\sin\frac{1}{2}\theta\left(\cos\frac{1}{2}\theta+j\sin\frac{1}{2}\theta\right)=-(z^{\frac{1}{2}}-z^{-\frac{1}{2}})z^{\frac{1}{2}}$		M1A1	
			=1-z		A1	
		(ii)	$C + jS = 1 - {\binom{n}{1}}z + {\binom{n}{2}}z^2 - \dots$ $= (1 - z)^n$	M1 A1		
			Hence $C + jS = \left\{ 2\sin\frac{1}{2}\theta \left(\sin\frac{1}{2}\theta - j\cos\frac{1}{2}\theta\right) \right\}^n$			
			$=\left\{(-j)2\sin\frac{1}{2}\theta\left(\cos\frac{1}{2}\theta+j\sin\frac{1}{2}\theta\right)\right\}^{n}$	E1		
			So $C + jS = (-2j)^n \left(\sin\frac{1}{2}\theta\right)^n \left(\cos\frac{1}{2}n\theta + j\sin\frac{1}{2}n\theta\right)$	M1	Applying deMoivre	May be implied
			For <i>n</i> even, $j^n [=(-1)^{\frac{n}{2}} = \pm 1]$ is real	B1		

4756

Question	Answer	Marks	Guidance	
	Hence for <i>n</i> even, $C = (-2j)^n \left(\sin \frac{1}{2}\theta\right)^n \cos(\frac{1}{2}n\theta)$	A1	For either C or S correct	
	and $S = (-2j)^n \left(\sin\frac{1}{2}\theta\right)^n \sin(\frac{1}{2}n\theta)$	A1 ft	<i>C</i> with $sin(\frac{1}{2}n\theta)$ for $cos(\frac{1}{2}n\theta)$	A0 for $C = \cos(\frac{1}{2}n\theta)$ and $S = \sin(\frac{1}{2}n\theta)$
	So $\frac{c}{s} = \cot\left(\frac{1}{2}n\theta\right)$	E1 [8]	Dependent on previous 4 marks	
(b)	Modulus $r = \sqrt{(6+2)} = 2\sqrt{2}$ (accept $\sqrt{8}$)	B1		
	Argument $\theta = \arctan(\sqrt{2} / \sqrt{6}) = \arctan(1 / \sqrt{3}) = \pi / 6$	B1		
	Cube roots: $r = \sqrt{2}$ (or $2^{\frac{1}{2}}$)	B1	B0 for $8^{1/6}$, 1.41	
	Arguments $\theta = \pi / 18, 13\pi / 18, 25\pi / 18$ (or $-11\pi / 18$)	B1B1	B1 for π / 18, B1 ft for other two	Penalise missing π 's and j's
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G1 G1	For <i>z</i> For the cube roots	Ignore scales and any distances marked
		[7]		
		[18]		

Question	Answer	Marks	Guidance
3 (i)	$\det \begin{pmatrix} \frac{1}{2} - \lambda & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} - \lambda \end{pmatrix} = 0$ $(\frac{1}{2} - \lambda)(\frac{1}{3} - \lambda) - \frac{1}{3} = 0$ Roots $\lambda = 1, -1/6$ $\lambda = 1: \text{ obtain } y = x \text{ hence eigenvector (e.g.) } \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\lambda = -1/6: \text{ obtain } 3y = -4x \text{ hence eigenvector (e.g.) } \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{6} \end{pmatrix}$ $\mathbf{P} = \begin{pmatrix} 1 & 3 \\ 1 & -4 \end{pmatrix}$ $\mathbf{P}^{-1} = -\frac{1}{7} \begin{pmatrix} -4 & -3 \\ -1 & 1 \end{pmatrix}$	B1 B1 M1 A1 A1 A1 B1 ft B1 ft [8]	$6\lambda^2 - 5\lambda - 1 = 0$ Using $\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$ or $(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = 0$ For B1B1 the order must be consistent The mark for \mathbf{P}^{-1} may be gained in part (ii)

⁴⁷⁵⁶

Question	Answer	Marks	Guidance	
(ii)	$\mathbf{M}^n = \mathbf{P} \mathbf{D}^n \mathbf{P}^{-1}$	B1	Allow matrices written out provided	intention is clear
	$\mathbf{D}^n = \begin{pmatrix} 1 & 0 \\ 0 & \left(-\frac{1}{6}\right)^n \end{pmatrix}$	B1 ft	$-\frac{1}{6}^{n}$ gets B0 unless recovered later	
	Multiply out $PD^{n}P^{-1}$ to obtain	M1		
	$\frac{1}{7} \begin{pmatrix} 4+3\left(-\frac{1}{6}\right)^n & 3-3\left(-\frac{1}{6}\right)^n \\ 4-4\left(-\frac{1}{6}\right)^n & 3+4\left(-\frac{1}{6}\right)^n \end{pmatrix}$	A1	All terms required	A0 if not simplified e.g. 1^n
	As <i>n</i> tends to infinity, $\left(-\frac{1}{6}\right)^n$ tends to zero.	M1	May be implied	
	$\frac{1}{7} \begin{pmatrix} 4 & 3 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} \frac{4}{7} & \frac{3}{7} \\ \frac{4}{7} & \frac{3}{7} \end{pmatrix}$	A1 ft [6]		
(iii)	$\mathbf{M}^{-1} = \mathbf{P}\mathbf{D}^{-1}\mathbf{P}^{-1}$	B1	Allow matrices written out provided	intention is clear
	$(\mathbf{M}^{-1})^n = \mathbf{P}\mathbf{D}^{-n}\mathbf{P}^{-1}$	M1	Or elements of $(\mathbf{M}^{-1})^n$ are the same	
			'size' as elements of \mathbf{D}^{-n}	or M2 for $(\mathbf{M}^{-1})^n$ is the matrix in (ii) with <i>n</i>
	$\mathbf{D}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -6 \end{pmatrix} \text{ so } \mathbf{D}^{-n} = \begin{pmatrix} 1 & 0 \\ 0 & (-6)^n \end{pmatrix}$	M1	Or \mathbf{D}^{-n} contains element $(-6)^n$	replaced by $-n$
	Hence $\left(\mathbf{M}^{-1}\right)^n$ does not tend to a limit	A1	Dependent on M1M1	
		[4]		

Mark Scheme

	Questi	on	Answer	Marks	Guidance
4	(i)		$y = \frac{1}{2} (e^{x} + e^{-x})$ Write as $t^{2} - 2yt + 1 = 0$ where $t = e^{x}$ Roots $t = e^{x} = y \pm \sqrt{y^{2} - 1}$ o.e. Hence $x = \ln(y \pm \sqrt{y^{2} - 1})$ Show the roots are reciprocals of one another So $x = \pm \ln(y \pm \sqrt{y^{2} - 1}))$ $c + 2c^{2} - 1 = 5$, where $c = \cosh(x)$ Solve quadratic c = 3/2 Other root ($c = -2$) rejected	B1 M1 A1 A1 E1 [5] B1 M1 A1 A1 A1	Answer given $(3+\sqrt{5})$
		OR	Obtain $x = \pm \ln\left(\frac{3}{2} + \sqrt{\frac{5}{4}}\right)$ $(e^{2x} - 3e^{x} + 1)(e^{2x} + 4e^{x} + 1) = 0$ $e^{x} = \frac{3 \pm \sqrt{5}}{2}$ Other roots ($e^{x} = -2 \pm \sqrt{3}$) rejected	A1 [5]	or $\ln\left(\frac{3\pm\sqrt{5}}{2}\right)$ M1 Quartic in e^x , factorised A1 A1 A1
			$x = \ln\left(\frac{3\pm\sqrt{5}}{2}\right)$		A1

4756

Mark Scheme

Question	Answer	Marks	Guidance	
(iii)	Area beneath the curve: $\int_{-a}^{a} (\cosh x + \cosh 2x) dx \text{ where } a = \ln\left(\frac{3}{2} + \sqrt{\frac{5}{4}}\right)$	G2	Fully correct, including (0, 2) Give G1 for U-shaped curve symmetrical about the y-axis	
	$\left[\sinh x + \frac{1}{2}\sinh 2x\right]_{-a}^{a}$ $\left[\sinh x \left(1 + \cosh x\right)\right]_{-a}^{a}$ $2\sinh a \left(1 + \cosh a\right)$	B1B1	For sinh x and $\frac{1}{2}$ sinh 2x Substituting limit $x = \ln\left(\frac{3+\sqrt{5}}{2}\right)$	Might be in exponential form
	$2\sqrt{\frac{5}{4}\left(1+\frac{3}{2}\right)}$ $\frac{5\sqrt{5}}{2}$	A1 A1		or $e^{a} = \frac{3 + \sqrt{5}}{2}$ and $e^{2a} = \left(\frac{3 + \sqrt{5}}{2}\right)^{2}$
	Required area is $10\ln\left(\frac{3+\sqrt{5}}{2}\right) - \frac{5\sqrt{5}}{2}$	B1 ft [8] [18]	For 10×(answer to (ii)) – (area under curve)	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

4756 Further Methods for Advanced Mathematics (FP2)

General Comments:

Most candidates appeared to have sufficient time to complete the paper, and were able to demonstrate a sound understanding of the topics being examined. Q.1 (on inverse circular functions and polar coordinates) was the best answered question, and Q.2 (on complex numbers) was the worst answered.

Comments on Individual Questions:

Q.1(a)(i) Almost all candidates wrote down f '(x) and obtained the binomial series correctly. The only common errors were incorrect signs.

Q.1(a)(ii) The series was usually obtained by integrating the series from part (i), but most candidates did not score full marks on this part. Very many candidates did not mention the constant of integration at all, and many that did left + c in their answer, omitting to show that the constant was zero.

Q.1(b) This integration was very well done. Errors such as $\arcsin(4x/3)$ instead of $\arcsin(2x/\sqrt{3})$, and omitting the factor $\frac{1}{2}$, were fairly common.

Q.1(c)(i) The curve was usually drawn well, although some continued the curve beyond the domain required.

Q.1(c)(ii) Most candidates correctly stated that r tends to infinity; although some just wrote 'r increases', which was not an adequate answer. Many candidates thought that r tends to zero.

Q.1(c)(iii) The enclosed area was usually obtained correctly.

Q.2(a)(i) Candidates who used the half-angle formulae quickly obtained $1 - \cos\theta - j \sin\theta$ and hence 1 - z. However, many candidates chose to express everything in terms of $z^{\frac{1}{2}}$, and this approach was much less successful, with many sign errors and missing j's; for example, $z^{\frac{1}{2}} - z^{-\frac{1}{2}} = 2\sin\frac{1}{2}\theta$ was a common starting point.

Q.2(a)(ii) Most candidates scored 3 marks or fewer (out of 8) on this part. $C + j S = (1 - z)^n$ was commonly obtained, and this was quite often rearranged into the given form, using part (i) or otherwise. Candidates were then expected to give explicit expressions for *C* and *S* by taking real and imaginary parts. It was crucial to state that j^n is real when *n* is even, but most candidates did not do this. Also, $(\sin 1/2\theta)^n$ often became $\sin 1/2n\theta$.

Q.2(b) Most candidates understood the exponential form of a complex number, and knew how to obtain the cube roots. There were some careless slips such as omitting j or π from the exponent, and some candidates did not divide the argument by 3 when finding the cube roots. The modulus of the cube roots was sometimes left as 8^{1/6} or $(2\sqrt{2})^{1/3}$ without being simplified to $\sqrt{2}$. The cube roots were usually indicated on the Argand diagram correctly, but a very large number overlooked the request to show *z* on the diagram.

Q.3(i) The methods for finding eigenvalues and eigenvectors was very well understood, and most candidates scored full marks on this part.

Q.3(ii) Most candidates wrote down the correct expression $\mathbf{M}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$, but the element $(-1/6)^n$ in \mathbf{D}^n very often became $-(1/6)^n$ leading to incorrect evaluation of the elements of \mathbf{M}^n . The limiting value as *n* tends to infinity was very often found correctly.

Q.3(iii) Many candidates wrote $\mathbf{M}^{-1} = \mathbf{P}^{-1}\mathbf{D}^{-1}\mathbf{P}$ instead of $\mathbf{M}^{-1} = \mathbf{P}\mathbf{D}^{-1}\mathbf{P}^{-1}$. Candidates were expected to argue, in a similar way to part (ii), that the elements of $(\mathbf{M}^{-1})^n$ contained $(-6)^n$ and so did not tend to a limit. However, the explanations were very often unclear, and most candidates scored no marks or 1 mark (out of 4) in this part.

Q.4(i) Most candidates showed that $x = \ln(y \pm \sqrt{y^2 - 1})$, but very many could not prove the final step $\ln(y - \sqrt{y^2 - 1}) = -\ln(y + \sqrt{y^2 - 1})$. The solution $x = \ln(y - \sqrt{y^2 - 1})$ was often rejected as being undefined.

Q.4(ii) Most candidates obtained a quadratic equation in cosh*x* and completed this successfully. Some wrote the equation in exponential form, but these rarely made much progress.

Q.4(iii) The curve was usually sketched correctly, although the *y*-intercept was often missing or incorrect. Finding the area under the curve in an exact simplified form caused many difficulties. The simplest way was to write the integrated expression as $\sinh x(1 + \cosh x)$ and then substitute $\sinh x = \pm \frac{1}{2}\sqrt{5}$ and $\cosh x = \frac{3}{2}$; but most candidates changed it into exponential form, which made the substitution much more complicated. Many candidates omitted the final step of subtracting the area under the curve from the area of a rectangle to obtain the area of the specified region.

GCE Mathematics (MEI)

UNX 100 60 70 60 50 40 60 50 40 72 56 49 42 35 20 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 60 50 40 70 50 51 45 38 0 60 50 40 00 70 60 60 40 00 70 60 60 40 00 70 60 61 40 00 70 60 64 40 00 70 60 64 40 00 70 60 50 40 00 70 60 50 40				Max Mark	а	b	С	d	е	u
UNS 100 B0 70 60 50 40 0 4753 01 (C3) MEI Methods for Advanced Mathematics with Coursework: Curisework Raw 72 58 52 47 42 36 0 4753 02 (C3) MEI Methods for Advanced Mathematics with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 4754 01 C4 – MEI Applications of advanced mathematics (A2) Raw 00 64 67 64 0 64 67 64 0 64 67 66 40 0 4755 01 FP1 – MEI Further concepts for advanced mathematics Raw 72 60 54 48 3 88 0 4756 01 FP2 – MEI Further methods for advanced mathematics Raw 72 60 54 49 43 38 0 4757 01 FP2 – MEI Further methods for advanced mathematics Raw 72 67 61 55	4751	01 C1 – MEI Introduction to advanced mathematics (AS)								0 0
N33 Of Coursework: Written Paper Name N2 So So N2 N3 N2 So So N2 N3 N3 <td>4752</td> <td>01 C2 – MEI Concepts for advanced mathematics (AS)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 0</td>	4752	01 C2 – MEI Concepts for advanced mathematics (AS)								0 0
1753 02 (C3) MEI Methods for Advanced Mathematics with Coursework. Coursework Mark Raw 18 15 13 11 9 8 0 1754 01 C4 – MEI Applications of advanced mathematics (A2) Raw 100 80 70 60 50 40 0 1755 01 FP1 – MEI Further concepts for advanced mathematics (AS) Raw 72 59 53 48 43 38 0 1756 01 FP1 – MEI Further concepts for advanced mathematics (AS) Raw 72 60 50 40 0 1757 01 FP3 – MEI Further methods for advanced mathematics (AS) Raw 72 60 50 40 0 1757 01 FP3 – MEI Further applications of advanced mathematics (AS) Raw 72 60 50 40 0 1758 01 (DE) MEI Differential Equations with Coursework: Written (AS) Raw 72 67 61 55 40 0 1758 02 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark UMS 100 80 70 60 </td <td>4753</td> <td></td> <td>Raw</td> <td>72</td> <td>58</td> <td>52</td> <td>47</td> <td>42</td> <td>36</td> <td>0</td>	4753		Raw	72	58	52	47	42	36	0
4753 82 C(3) MEI Methods for Advanced Mathematics with Coursework Mark. Raw 18 15 13 11 9 8 0 4754 01 C4 – MEI Applications of advanced mathematics (A2) Raw 90 64 57 61 64 83 0 4755 01 FP1 – MEI Further concepts for advanced mathematics (A2) Raw 72 55 53 48 43 38 0 4755 01 FP2 – MEI Further concepts for advanced mathematics (A2) Raw 72 60 54 48 43 38 0 4757 01 FP2 – MEI Further methods for advanced mathematics (A2) Raw 72 60 54 49 44 39 0 4757 01 FP3 – MEI Further applications of advanced mathematics (A2) Raw 72 67 61 55 49 43 9 0 4758 01 (OE) MEI Differential Equations with Coursework: Written Paper Raw 18 15 13 11 9 8 0 0 0 0 0 0 0	4753	(C3) MEI Methods for Advanced Mathematics with	Raw	18	15	13	11	9	8	0
UMS 100 80 70 60 60 0 0 1754 01 C4 – MEI Applications of advanced mathematics Raw 90 64 57 51 48 33 0 1755 01 FP1 – MEI Further concepts for advanced mathematics Raw 72 59 53 48 43 38 0 1756 01 FP2 – MEI Further methods for advanced mathematics Raw 72 60 54 48 43 38 0 1757 01 FP3 – MEI Further methods for advanced mathematics Raw 72 60 54 49 44 39 0 1757 01 FP3 – MEI Further applications with Coursework: Written Paper Raw 72 67 61 55 49 43 0 1758 01 (DEI MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 0 0 0 0 0 <td< td=""><td>4753</td><td>87 1 1</td><td>Raw</td><td>18</td><td>15</td><td>13</td><td>11</td><td>9</td><td>8</td><td>0</td></td<>	4753	87 1 1	Raw	18	15	13	11	9	8	0
UMS 100 80 70 60 50 40 0 4755 01 FP1 - MEI Further concepts for advanced mathematics (AS1) Raw 72 59 53 48 43 38 0 4756 01 FP2 - MEI Further methods for advanced mathematics (AS1) Raw 72 60 54 48 43 38 0 4757 01 FP3 - MEI Further applications of advanced mathematics (AS1) Raw 72 60 54 48 43 9 0 4758 01 (DE) MEI Differential Equations with Coursework: Written Paper Raw 72 67 61 55 49 43 0 4758 02 (DE) MEI Differential Equations with Coursework: Carried Paper Raw 18 15 13 11 9 8 0 4761 01 M1 - MEI Mechanics 1 (AS) Raw 72 68 53 40 0 0 0 06 50 40 0 0 0			UMS	100	80	70	60	50	40	0
Number of the second	4754	01 C4 – MEI Applications of advanced mathematics (A2)			-		-	-		-
Product FP2 - MEI Further methods for advanced mathematics Raw 72 60 54 48 43 38 0 4756 01 FP3 - MEI Further applications of advanced mathematics Raw 72 60 54 48 43 38 0 4757 01 FP3 - MEI Further applications of advanced mathematics Raw 72 60 54 49 44 39 0 4758 01 (DE) MEI Differential Equations with Coursework: Written Paper Raw 18 15 13 11 9 8 0 4758 62 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark MMS 100 80 70 60 50 40 0 4761 01 M1 - MEI Mechanics 1 (AS) Raw 72 59 53 47 41 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	4755		Raw	72	59	53	48	43	38	0
K426 01 (A2)1 K424 7/2 60 54 48 43 38 0 1757 01 FP3 – MEI Further applications of advanced mathematics (A7) Raw 7/2 60 54 49 40 0 4758 01 [DE) MEI Differential Equations with Coursework: Written Paper Raw 7/2 67 61 55 49 43 0 4758 02 [DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 4768 02 [DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 4761 01 M1 – MEI Mechanics 1 (AS) Raw 7/2 60 53 47 41 66 0			UMS	100	80	70	60	50	40	0
4757 01 FP3 - MEI Further applications of advanced mathematics (A2) Raw 72 60 54 49 44 39 0 4757 01 (DE) MEI Differential Equations with Coursework: Written Paper Raw 72 67 61 55 49 43 0 4758 02 (DE) MEI Differential Equations with Coursework: Coursework Raw 18 15 13 11 9 8 0 4758 82 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 4761 01 M1 – MEI Mechanics 1 (AS) Raw 72 59 53 47 41 36 09 0 4762 01 M2 – MEI Mechanics 3 (A2) Raw 72 59 53 47 41 34 0 0 4764 01 M4 – MEI Mechanics 3 (A2) Raw 72 59 53 46 43 0 0 4764 01 M4 – MEI Mechanics 3 (A2) Raw 72 55	4756	01								
Kay 1/2 60 54 49 44 39 0 MA 01 (DE) MEI Differential Equations with Coursework: Written Paper Raw 72 67 61 55 49 43 0 1758 01 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 1758 02 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 1761 01 M1 – MEI Mechanics 1 (AS) Raw 72 56 50 40 0 1762 01 M2 – MEI Mechanics 2 (A2) Raw 72 59 53 47 136 0 0 1764 01 M4 – MEI Mechanics 3 (A2) Raw 72 59 52 48 40 0 0 1766 01 S1 – MEI Statistics 1 (AS) Raw 72 55 50 43 0 0 1767 01 S2 – MEI Statistics 3 (A2)		ED2 MEL Evither employed on a set any analyzed methometrics	UMS	100	80	70	60	50	40	0
4758 01 (DE) MEI Differential Equations with Coursework: Written Paper Raw 72 67 61 55 49 43 0 4758 02 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 4758 02 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 4761 01 M1 – MEI Mechanics 1 (AS) Raw 72 59 53 47 41 60 0 0 0 4762 01 M2 – MEI Mechanics 2 (A2) Raw 72 59 53 47 41 60 0 0 0 06 50 40 0 4763 01 M4 – MEI Mechanics 3 (A2) Raw 72 60 53 46 43 40 0 0 0 60 50 40 0 0 0 60 50 40 0 0 0 60 50 40 0<	1757						-			-
1739 01 Paper Raw 72 67 61 55 49 43 0 4758 02 (DE) MEI Differential Equations with Coursework: Coursework Raw 18 15 13 11 9 8 0 4758 82 (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark Raw 18 15 13 11 9 8 0 4761 01 M1 – MEI Mechanics 1 (AS) Raw 180 100 80 70 60 50 40 0 4762 01 M2 – MEI Mechanics 2 (A2) Raw 72 59 53 46 40 34 0 4763 01 M3 – MEI Mechanics 4 (A2) Raw 72 50 53 46 40 34 0 4764 01 M4 – MEI Mechanics 4 (A2) Raw 72 55 54 43 40 0 4766 01 S1 – MEI Statistics 1 (AS) UMS 100 80 70 60 50 40 0 4768		(DE) MEL Differential Equations with Coursework: Written	UMS	100	80	70	60	50	40	0
No. D2 Coursework Like Io Io <thio< th=""> <thio< th=""> <thio< th=""></thio<></thio<></thio<>	4758	Paper		72	67		55	49	43	0
Pros D2 Forward Coursework Mark IRAW IRAW <t< td=""><td>4758</td><td>⁰² Coursework</td><td>Raw</td><td>18</td><td>15</td><td>13</td><td>11</td><td>9</td><td>8</td><td>0</td></t<>	4758	⁰² Coursework	Raw	18	15	13	11	9	8	0
4761 01 M1 – MEI Mechanics 1 (AS) Raw 72 58 50 43 36 29 0 4762 01 M2 – MEI Mechanics 2 (A2) Raw 72 59 53 47 41 36 0 0 4763 01 M3 – MEI Mechanics 3 (A2) Raw 72 60 53 46 40 0 4764 01 M4 – MEI Mechanics 4 (A2) Raw 72 55 54 84 13 42 70 60 50 40 0 4764 01 M4 – MEI Mechanics 4 (A2) Raw 72 55 55 48 41 34 27 0 4766 01 S1 – MEI Statistics 1 (AS) Raw 72 59 52 46 40 34 0 4767 01 S2 – MEI Statistics 2 (A2) Raw 72 60 55 50 45 40 0 4768 01 S3 – MEI Statistics 3 (A2) Maw 72 66 54 48 42 35 28 0 <td>1758</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	1758								-	
UMS 100 80 70 60 50 40 0 4762 01 M2 - MEI Mechanics 2 (A2) Raw 72 59 53 47 41 36 0 0 4763 01 M3 - MEI Mechanics 3 (A2) Raw 72 60 53 46 40 34 0 4764 01 M4 - MEI Mechanics 4 (A2) Raw 72 55 48 41 34 0 4766 01 S1 - MEI Statistics 1 (AS) Raw 72 59 52 46 40 34 0 4766 01 S2 - MEI Statistics 2 (A2) Raw 72 60 55 645 40 0 4767 01 S2 - MEI Statistics 3 (A2) Raw 72 60 55 45 40 0 4768 01 S3 - MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 0 0 4779	1761	01 M1 – MEL Mechanics 1 (AS)							-	
UMS 100 80 70 60 50 40 0 4763 01 M3 - MEI Mechanics 3 (A2) Raw 72 60 53 46 40 34 0 4764 01 M4 - MEI Mechanics 4 (A2) Raw 72 55 48 41 34 27 0 4766 01 S1 - MEI Statistics 1 (AS) Raw 72 59 52 46 40 34 0 4767 01 S2 - MEI Statistics 2 (A2) Raw 72 60 55 50 45 40 0 4768 01 S3 - MEI Statistics 3 (A2) Raw 72 60 55 40 0 4769 01 S4 - MEI Statistics 4 (A2) Raw 72 66 48 42 37 0 4771 01 D1 - MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 0 4771 01 D1 - MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 <	+701									-
UMS 100 80 70 60 50 40 0 4764 01 M4 – MEI Mechanics 4 (A2) Raw 72 55 48 41 34 27 0 4766 01 S1 – MEI Statistics 1 (AS) Raw 72 59 52 46 40 34 0 4766 01 S1 – MEI Statistics 2 (A2) Raw 72 60 55 50 45 40 0 4767 01 S2 – MEI Statistics 3 (A2) Raw 72 60 55 50 45 40 0 4768 01 S3 – MEI Statistics 3 (A2) MMS 100 80 70 60 50 40 0 4769 01 S4 – MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 0 4771 01 D1 – MEI Decision mathematics 1 (AS) MMS 100 80 70 60 50 40 0 <td>4762</td> <td>01 M2 – MEI Mechanics 2 (A2)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4762	01 M2 – MEI Mechanics 2 (A2)								
UMS 100 80 70 60 50 40 0 4766 01 S1 – MEI Statistics 1 (AS) Raw 72 59 52 46 40 34 0 4767 01 S2 – MEI Statistics 2 (A2) Raw 72 60 55 50 40 0 4768 01 S3 – MEI Statistics 3 (A2) Raw 72 60 54 48 42 37 0 4769 01 S4 – MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 0 4771 01 D1 – MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 0 4772 01 D2 – MEI Decision mathematics 2 (A2) Max 72 48 43 38 34 30 0 4772 01 D2 – MEI Decision mathematics computation (A2) Raw 72 55 50 45 40 36 0	4763	01 M3 – MEI Mechanics 3 (A2)								-
UMS 100 80 70 60 50 40 0 4767 01 S2 – MEI Statistics 2 (A2) Raw 72 60 55 50 45 40 0 4768 01 S3 – MEI Statistics 3 (A2) Raw 72 60 54 48 42 37 0 4769 01 S4 – MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 0 4771 01 D1 – MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 0 4772 01 D2 – MEI Decision mathematics 2 (A2) Raw 72 48 43 38 34 30 0 4772 01 D2 – MEI Decision mathematics 2 (A2) Raw 72 48 43 38 34 30 0 4773 01 DC – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29	4764	01 M4 – MEI Mechanics 4 (A2)								
4767 01 S2 - MEI Statistics 2 (A2) Raw UMS 72 100 60 55 50 45 40 0 4768 01 S3 - MEI Statistics 3 (A2) Raw UMS 72 100 60 54 48 42 37 0 4769 01 S4 - MEI Statistics 4 (A2) Raw UMS 72 56 49 42 35 28 0 4770 01 D1 - MEI Decision mathematics 1 (AS) Raw UMS 72 48 43 38 34 30 0 4771 01 D1 - MEI Decision mathematics 2 (A2) Raw UMS 72 48 43 38 34 30 0 4772 01 D2 - MEI Decision mathematics 2 (A2) Raw UMS 72 46 40 34 29 24 0 4773 01 DC - MEI Decision mathematics computation (A2) Raw UMS 72 46 40 34 29 24 0 4776 01 MC - MEI Numerical Methods with Coursework: Coursework Raw 72 55 49 44	4766	01 S1 – MEI Statistics 1 (AS)					-	-		0
4768 01 S3 – MEI Statistics 3 (A2) Raw 72 60 54 48 42 37 0 4769 01 S4 – MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 0 4771 01 D1 – MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 0 4772 01 D2 – MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 0 4773 01 D2 – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4776 01 DC – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4776 01 MC – MEI Numerical Methods with Coursework: Written Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Carried Raw 18 14 12 10 8 7 <td< td=""><td>4767</td><td>01 S2 – MEI Statistics 2 (A2)</td><td>Raw</td><td>72</td><td>60</td><td>55</td><td>50</td><td>45</td><td>40</td><td>0</td></td<>	4767	01 S2 – MEI Statistics 2 (A2)	Raw	72	60	55	50	45	40	0
4769 01 S4 - MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 0 4771 01 D1 - MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 0 4772 01 D2 - MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 0 4773 01 DC - MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4776 01 NC - MEI Numerical Methods with Coursework: Written Paper Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Written Coursework: Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 0 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 47 <	4768	01 S3 – MEI Statistics 3 (A2)	Raw	72	60	54	48	42	37	0
UMS 100 80 70 60 50 40 0 4771 01 D1 – MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 0 4772 01 D2 – MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 0 4773 01 DC – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4773 01 DC – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4776 01 DC – MEI Decision mathematics computation (A2) Raw 72 55 49 44 39 33 0 4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 18 14 12 10 8 7 0 4776 02 (NM) MEI Numerical Methods with Coursework: Carrried Forward Coursework Mark Raw	4769	01 S4 – MEI Statistics 4 (A2)								
UMS 100 80 70 60 50 40 0 4772 01 D2 – MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 0 4773 01 DC – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4776 01 PAPer Raw 72 55 49 44 39 33 0 4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 0 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 <td></td>										
UMS 100 80 70 60 50 40 0 4773 01 DC – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Written Coursework Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Raw 18 14 12 10 8 7 0 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25	4771	01 D1 – MEI Decision mathematics 1 (AS)								
4773 01 DC - MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4773 01 DC - MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Carried Coursework Raw 18 14 12 10 8 7 0 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55	4772	01 D2 - MEI Decision mathematics 2 (A2)								
UMS 100 80 70 60 50 40 0 4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Coursework Raw 18 14 12 10 8 7 0 4776 82 (NM) MEI Numerical Methods with Coursework: Forward Coursework Mark Raw 18 14 12 10 8 7 0 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0	4772	01 DC MEL Decision methometics computation (A2)								
4776 01 Paper Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Coursework Raw 18 14 12 10 8 7 0 4776 82 (NM) MEI Numerical Methods with Coursework: Forward Coursework Mark Raw 18 14 12 10 8 7 0 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0	+//3	,								
4776 02 Coursework 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0	4776		Raw	72	55	49	44	39	33	0
Forward Coursework Mark Raw 16 14 12 10 8 7 0 UMS 100 80 70 60 50 40 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 UMS 100 80 70 60 50 40 0	4776	⁰² Coursework	Raw	18	14	12	10	8	7	0
4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 UMS 100 80 70 60 50 40 0	4776		Raw	18	14	12	10	8	7	0
UMS 100 80 70 60 50 40 0									40	
4798 01 FPT - Further pure mathematics with technology (A2) Raw 72 57 49 41 33 26 0	4777	01 NC – MEI Numerical computation (A2)								0 0
	4798	01 FPT - Further pure mathematics with technology (A2)	Raw	72	57	49	41	33	26	0

Oxford Car	mbridge and RSA	UMS	100	80	70	60	50	40	0
GCE Stati	stics (MEI)								
			Max Mark	а	b	С	d	е	u
G241	01 Statistics 1 MEI (Z1)	Raw UMS	72 100	59 80	52 70	46 60	40 50	34 40	0 0
G242	01 Statistics 2 MEI (Z2)	Raw UMS	72 100	55 80	48 70	41 60	34 50	27 40	0 0
G243	01 Statistics 3 MEI (Z3)	Raw	72	56	48	41	34	27	0

UMS

100

80

70

60

50

40

0

GCE Quantitative Methods (MEI)

			Max Mark	а	b	С	d	е	u
G244	01 Introduction to Quantitative Methods MEI	Raw	72	58	50	43	36	28	0
G244	02 Introduction to Quantitative Methods MEI	Raw	18	14	12	10	8	7	0
		UMS	100	80	70	60	50	40	0
G245	01 Statistics 1 MEI	Raw	72	59	52	46	40	34	0
		UMS	100	80	70	60	50	40	0
G246	01 Decision 1 MEI	Raw	72	48	43	38	34	30	0
		UMS	100	80	70	60	50	40	0

Level 3 Certificate and FSMQ raw mark grade boundaries June 2016 series

For more information about results and grade calculations, see www.ocr.org.uk/ocr-for/learners-and-parents/getting-your-results

			Max Mark	a*	а	b	С	d	е
860	01 Mathematics for Engineering		This unit	has no	ontrio	in lu	no 201	16	
1860	02 Mathematics for Engineering			1105 110	entries	SIIIJU		0	
aval 2 Ca	ertificate Mathematical Techniques and Applications for Engineers								
level 5 Ce	a micale Mamematical rechniques and Applications for Engineers		Max Mark	a*	а	b	с	d	е
1865	01 Component 1	Raw	60	48	42	36	30	24	18
evel 3 Ce	ertificate Mathematics - Quantitative Reasoning (MEI) (GQ Reform)								
			Max Mark	а	b	С	d	е	u
1866	01 Introduction to guantitative reasoning	Raw	72	55	47	39	31	23	0
-1866	02 Critical maths	Raw	60	47	41	35	29	23	0
		Overall	132	111	96	81	66	51	0
		Overall	132	111	96	81	66	51	0
.evel 3 Ce	ertificate Mathematics - Quantitive Problem Solving (MEI) (GQ Reform)	Overall	132	111	96	81	66	51	0
.evel 3 Ce	ertificate Mathematics - Quantitive Problem Solving (MEI) (GQ Reform)	Overall	132 Max Mark	111 a	96 b	81 c	66 d	51 e	0 u
	ertificate Mathematics - Quantitive Problem Solving (MEI) (GQ Reform) 01 Introduction to quantitative reasoning	Overall Raw						-	
-1867			Max Mark	а	b	С	d	е	u
Level 3 Ce H867 H867	01 Introduction to quantitative reasoning	Raw	Max Mark 72	a 55	b 47	c 39	d 31	e 23	u 0
H867 H867	01 Introduction to quantitative reasoning 02 Statistical problem solving	Raw Raw	Max Mark 72 60	a 55 40	b 47 34	c 39 28	d 31 23	e 23 18	u 0 0
H867 H867	01 Introduction to quantitative reasoning	Raw Raw	Max Mark 72 60 132	a 55 40 103	b 47 34 88	c 39 28 73	d 31 23 59	e 23 18 45	u 0 0
H867 H867 Advanced	01 Introduction to quantitative reasoning 02 Statistical problem solving Free Standing Mathematics Qualification (FSMQ)	Raw Raw Overall	Max Mark 72 60 132 Max Mark	a 55 40 103 a	b 47 34 88 b	с 39 28 73 с	d 31 23 59 d	е 23 18 45 е	u 0 0
H867 H867 Advanced	01 Introduction to quantitative reasoning 02 Statistical problem solving	Raw Raw	Max Mark 72 60 132	a 55 40 103	b 47 34 88	c 39 28 73	d 31 23 59	e 23 18 45	u 0 0
1867 1867 Advanced	01 Introduction to quantitative reasoning 02 Statistical problem solving Free Standing Mathematics Qualification (FSMQ) 01 Additional Mathematics	Raw Raw Overall	Max Mark 72 60 132 Max Mark	a 55 40 103 a	b 47 34 88 b	с 39 28 73 с	d 31 23 59 d	е 23 18 45 е	u 0 0
H867 H867 Advanced 5993	01 Introduction to quantitative reasoning 02 Statistical problem solving Free Standing Mathematics Qualification (FSMQ)	Raw Raw Overall	Max Mark 72 60 132 Max Mark	a 55 40 103 a	b 47 34 88 b	с 39 28 73 с	d 31 23 59 d	е 23 18 45 е	u 0 0

Version	Details of change
11	Correction to Overall grade boundaries for H866
1.1	Correction to Overall grade boundaries for H867